Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
2.
Viruses ; 14(7)2022 07 15.
Article in English | MEDLINE | ID: covidwho-1939020

ABSTRACT

Four seasonal human coronaviruses (sHCoVs) are endemic globally (229E, NL63, OC43, and HKU1), accounting for 5-30% of human respiratory infections. However, the epidemiology and evolution of these CoVs remain understudied due to their association with mild symptomatology. Using a multigene and complete genome analysis approach, we find the evolutionary histories of sHCoVs to be highly complex, owing to frequent recombination of CoVs including within and between sHCoVs, and uncertain, due to the under sampling of non-human viruses. The recombination rate was highest for 229E and OC43 whereas substitutions per recombination event were highest in NL63 and HKU1. Depending on the gene studied, OC43 may have ungulate, canine, or rabbit CoV ancestors. 229E may have origins in a bat, camel, or an unsampled intermediate host. HKU1 had the earliest common ancestor (1809-1899) but fell into two distinct clades (genotypes A and B), possibly representing two independent transmission events from murine-origin CoVs that appear to be a single introduction due to large gaps in the sampling of CoVs in animals. In fact, genotype B was genetically more diverse than all the other sHCoVs. Finally, we found shared amino acid substitutions in multiple proteins along the non-human to sHCoV host-jump branches. The complex evolution of CoVs and their frequent host switches could benefit from continued surveillance of CoVs across non-human hosts.


Subject(s)
Coronavirus Infections , Coronavirus , Respiratory Tract Infections , Animals , Coronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Dogs , Humans , Mice , Rabbits , Seasons , Sequence Analysis, DNA
3.
Virol J ; 18(1): 104, 2021 05 29.
Article in English | MEDLINE | ID: covidwho-1257951

ABSTRACT

BACKGROUND: Human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) are leading causes of viral severe acute respiratory illnesses in childhood. Both the two viruses belong to the Pneumoviridae family and show overlapping clinical, epidemiological and transmission features. However, it is unknown whether these two viruses have similar geographic spread patterns which may inform designing and evaluating their epidemic control measures. METHODS: We conducted comparative phylogenetic and phylogeographic analyses to explore the spatial-temporal patterns of HMPV and RSV across Africa using 232 HMPV and 842 RSV attachment (G) glycoprotein gene sequences obtained from 5 countries (The Gambia, Zambia, Mali, South Africa, and Kenya) between August 2011 and January 2014. RESULTS: Phylogeographic analyses found frequently similar patterns of spread of RSV and HMPV. Viral sequences commonly clustered by region, i.e., West Africa (Mali, Gambia), East Africa (Kenya) and Southern Africa (Zambia, South Africa), and similar genotype dominance patterns were observed between neighbouring countries. Both HMPV and RSV country epidemics were characterized by co-circulation of multiple genotypes. Sequences from different African sub-regions (East, West and Southern Africa) fell into separate clusters interspersed with sequences from other countries globally. CONCLUSION: The spatial clustering patterns of viral sequences and genotype dominance patterns observed in our analysis suggests strong regional links and predominant local transmission. The geographical clustering further suggests independent introduction of HMPV and RSV variants in Africa from the global pool, and local regional diversification.


Subject(s)
Metapneumovirus , Paramyxoviridae Infections , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Africa/epidemiology , Humans , Metapneumovirus/genetics , Paramyxoviridae Infections/epidemiology , Phylogeny , Phylogeography , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus, Human/genetics , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL